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/714* - The fact that matter can be converted into radiation and radiation into 
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The matrix Rs is a function of the differe 
singular on the light-cone. With 

omes 

.- - _ _  .. 
A ,  = - AO; A ,  = A'. for the potentials and a0 = ---a, = 1 and ai = a,, for the Dirac 
matrices, we obtain 

where** 
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extends fro 
a straight 1 

(The summation ov 
indices from 0 to 3 

/717 The density matrix r characterizes the influence of matter. It is obtained - 
from Rs with 

(11) 

where S is defined by 

. i  

S is equal to the matrix R in space free of fields and matter. 2, b 
fined by the following equations*: 

are de- 
0 S 

The four-vector and the energy-momentum tensor are  determined by r: 

In the quantum theory of wave fields it is of advantage to expand the wave function 

I 
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The operators a can be rewritten as  n 

(16) 

ts thenumber N into 1-Nn, a 

The Hamiltonian of the total system, in the new variables, is 

(17) 

The coefficients of an expansion in powers of the elementary charge are: 
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2. Calculation of the Energy Density in 
the Wave Representation 

The Lagrangian for the modified Maxwell's equations must be a function of 
only the invariants &2- B2 and (GB)* . It is therefore sufficient to find an energy- 
density of the matter-field as  a function of two independent field components. For 
example, it  is sufficient to determine the energy-density of matter in a constant 
electric and parallel constant magnetic field. In these constant fields one must 
examine the state of the matter-field which corresponds to the absence of matter. 
This state is obviously that with the lowest energy. The lowest energy in the 
wave representation [Eqs. (4) and ( 6 )  J is given when all negative-energy electron 
levels are occupied and all positive-energy electron levels are empty. In the 
presence of a magnetic field, stationary electron states can again be divided into 
those with negative and those with positive energy. The lowest-energy state of the 
matter-field can thus be found in the same way with a magnetic field or without 
any fields. 

/719 - 

The situation changes when an electron field is present. The potential 
energy increases linearly with a coordinate. Any value of the energy between 
- a> and + 00 is possible. Eigenfunctions for different eigenvalues can be made 
identical by a mere shift in position. An unambiguous classification into positive 
and negative eigenvalues is impossible. 

functions to an eigenvalue E are  large 
0 

in 

The physical reason for this 
difficulty is related to the fact that 
electron-positron pairs can be gene- 
rated spontaneously in a constant 
electric field. A complete calculation 
of this problem was given by Sauter 
151. Figure 1 shows the potential 
energy V(x), V(x) + mc2 and V(x) - mc2 
as a function of the coordinate for an 
electron field parallel to the x-axis. 
Sauter's calculations show that eigen- 

regions I and 111, and that they decrease 
exponentially within region 11. This means that a wave-function which is large 

solutions will, for example, be large in 
every place in region 111, at least for 
in 111 and will almost completely dis- 

appear in I. With this part of the calculation accomplished, the lowest-energy 
state can be found: all electron levels whose eigenfunctions are large in 111 only 
must be occupied; all other levels mustbe unoccupied. The energy of such an 
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tween the energy density at the point xo and Eo 

tric field is turned off adiabatically, then 
state of field-free space where only electron I 

direction of the x-axis) can be 

The motion along the y- and z- axis can be separated from that in direction x 

We define an operator K by the relation 

We therefore obtain: 

ation for the function un(y) which is 

(23a) -- 

we have 

(23) /721 
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since (22) is essentially the Schrbdinger equation for the harmonic oscillator. 

. i  

Hn(y) is the nth Hermite polynomial. 

(24) 

The operators K and al anticommute. The wave equation (19) can be written in 
the form 

A canonical transformation can be applied to, ;G so that the matrix 6 is diagonalized 
and K and al become 

The two matrices are  based on another index which is independent of the spin- 
orientation (i. e. the "@ "-coordinate). % can be considered to be a simple 

= f 1) ; with the abbreviations 

1 

n the equations 
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The path of integration begins at  + 00, passes the singular points at +i/2 and 
-i/2, and returns to +OD. 

neglect pair-producti 
, which vanish in one 
or example, we set 
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compensated by the corresponding terms of the S-matrix. The remaining non- 
singular terms will yield the desired result. 

Before writing the density matrix, the eigenfunctions must be normalized. 
One might consider the eigenfunctions to be limited to a large distance L in the 
directions of x and z (the eigenfunctions Un( 

z-direction, one* obtains the normalization f 
behavior of Sauter‘s eigenfunctions ( [ 51 , eq 
in direction x. A summation over all states must be carried 
of the form 

y normalized), For the 

-P, = 

and over all energies of the form 

into integrals with the different 
I l i  
Y:L I- 

of the state is equal to the difference E-- e ]el %,. An expression for the energy 
density corresponding to the matrix Rs (compare Section 1) is then: 

e sums can be converted 

e have again omitted factors of 

-1 in the eigenfunctions. For a calculation of the density at a point xo the energy 
h S l L C  -I 

- 

This expression will later be used to discuss the behavior 
duce the abbreviations 

We intro- 
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where h(sl s2) is equal to 

The integration 

ly easy; the path 

where 
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There one can devel 

From now on 
critical field 

field is small compared to the 

~ 

1 4% = -[1 f b(2TL + 1 
U 

e exponent cannot be simplified. Higher-order 
small (we are interested 

T obtain an 

. .  



It is apparent that 
the final result. 

rms of Euler's sum mle do not co 

1 b? p + (2%' + 1) b y  

The coefficients c will be determined later. m 
The terms corresponding to the singular S-matrix must be subtracted from 

this result. The field-independent part of this singular energy density is easily 
obtained by repeating the calculation for plane waves 

d-dependent parts of S is more difficult. According to 
tain the field strengths to the second power; the same 
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For the other 

In order to gain insight into the general 
attempted to find an integral representa 
integral representation of the zeta-functi 

itrary fields, we 

terms can be replaced 

Lagrangian for fields of 

The first term of the expansion in (43) agrees with the results of Euler and Kochel 
(loc. cit.), 
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The convergence of this power-series expansion must be investigated in more 1 2  
detail. For a = o the intergal (45) converges for any value of b. But for a a f 0 ' 

the integral becomes meaningless at  71 = q'a ,  2 n/a,  - 0 ,  where ctg a q becomes 
infinite. The power-series expansion in a (which was used in the derivation) will 
therefore be semiconvergent. The intergal (45) can be made unambiguous if the 
path of integration i s  such that the singular points n / a ,  2 z l a  are by-passed. Then 
the integral (45) will contain additional imaginary terms which, at  first sight, 
cannot be interpreted physically. The meaning becomes clear when the magnitude 
of these terms is estimated. The integral (45) has a value - __. .i a2 W C ~  (T) c a :  

at the singular point rl = n / a  (for b = 0). This is just the order of magnitude of the 
terms that describe pair-production in an electric field. The integral (45) appears 
to be similar to the perturbation-theory integration over a periodically vanishing 
denominator. One may assume that convergence of the integral is provided by 
a damping term which reflects the frequency of the periodic resonance process. 
The result of a calculation which bypasses the singular points will be correct up 
to terms which are of order of magnitude corresponding to the resonance fre- 
quency. According to (43) and (44), deviations from Maxwell 's theory remain 
small as  long as 0 and B are small compared to the electric field at distance 
1'157. e2/ i / ica from the center of the electron. Even if the magnetic field is larger 
than this value, the corrections to Maxwell's equations will be small (of order 
1 P - - compared to the original terms) as long as  log b is of the order of 1. For 
3n tcc'. 
example, deviations from the usual Coulomb-force between two protons, due to 
(43) and (44) will always remain small. On the other hand, one must consider 
that the additional terms for a Coulomb-field (which contain derivatives of the 
field strengths) may be more important than those included in equations (43) and 

2 i  71L c - f 
3% 

- .- 

(44). 
- 

3. Implications of the Result for the Quantum 
Theory of Wave Fields 

The results of the derivation in the preceding section cannot be adapted 
immediately to the quantum theory of wave fields. It can easily be shown that 
the equations obtained above do not describe the state of matter ina homogeneous 
field as  seen by the quantum theory of wave fields. Consider first that the state 
of matter discussed in the previous section is  the "unperturbed" state. Then 
there are matrix elements of the perturbation energy which describe the simul- 
taneous production of a photon and an electron-positron pair, Even if the energy 
is  insufficient to generate such particles, these matrix elements will give rise 
to a second-order perturbation energy. This is due to the virtual possibility 
of generation and annihilation of a photon and a pair; the appropriate calculation 
diverges. The appearance of perturbation terms becomes intuitively obvious if 
one considers, for example, that circular orbits in a magnetic field are not 
really stationary states - electrons in such states can radiate. The crucial 
point for the "physics" of the calculations in the preceding section is that this 
radiation need not be included in the classical theory of wave-fields, The solu- 
tion obtained demonstrates that the charge and current density of matter vanishes 
and that it therefore does not radiate. This is in contrast with the quantum 
theory of waves in which a remainder of this radiation appears in form of a 
second-order divergent perturbation energy. 

- /730 
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The same type of perturbation energy appears in field-free vacuum ("self- 
energy of the vacuumff). Such self-energies appear whenever one calculates 
the second- and higher-order energy contributions of virtual transitions into a 
different state and return to the initial state. So far self-energies have always 
been neglected. For example, the interaction crow section for Compton scatter- 
ing is obtained by a perturbation calculation up to the second order. By including 
fourth-order terms, one would get contributions like those just mentioned; the 
result would not converge. The scattering of light by light (loc. cit. ) is computed 
in a perturbation calculation up to the fourth order (this is the lowest order which 
contributes to the process under consideration). In this case, the sixth-order con- 
tributions would diverge. Such calculations have so far been successful (e, g. for 
the Klein-Nishina equation) which seems to indicate that the omission of the 
diverging higher-order contributions leads to correct results. If this is true, 

This is physically reasonable since the corresponding equivalent to the radiation 
terms could not be interpreted. Each term in the expansion of the energy density 
in powers of 13 and 8 can now be related to a scattering process; the cross section 
can be determined wzh the appropriate term. For example, fourth-order terms 
describe ordinary scattering of light by light. Sixth-order terms describe 
processes where three photons are scattered off each other, etc. Independent of 
whether the omission of higher-order terms is permissible from the point of view 
of physics, each term in the expansion of the preceding section must agree with 
the result of a direct calculation of the particular scattering process. This 
perturbation calculation, according to the quantum theory of waves, must be 
carried out up to thelowest-order t e r n  which contributes to the process con- 
sidered. The underlying reason is that both methods neglect the contribution 
from terms which correspond to the creation and annihilation of a photon and a 
pair. (Theaccuracy of the calculation can be verified by comparing the fourth- 
order terms with the results of a direct calculation of the scattering of light by 
light [6]). It might therefore by possible to apply the solution for to 
known results. This is certainly not possible for \(E/ Z lek], since pair-production 
actually occurs in large electric fields; the calculations made above do not apply 
in this case. 

/731 then the results of Section 2 can be transferred to the quantum theory of waves. - 

4. 

The results of Sec 
dify Maxwell's equations. Instead of the clas 

culation uses a complicated function of the inva 
rder of magnitude of the first terms in the exp 

r derivatives of the 
quence of the Dirac 

he self-energy of electrons cannot by 
these modifications. Born's theory 

showed that modifications of MvIaxwellfs equations of the order of magnitude 
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e .  

considered here may be sufficient to eliminate difficulties that result from an 
infinite self-energy. This result provides an important clue for the further 
development of the theory. 

In this connection, one must also ask whether results of the Dirac theory 
concerning the scattering of light by light, etc., can be considered to be final, 

qualitative form of these modifications. Of course, it is as yet impossible to 
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